490 research outputs found

    Future neutrino oscillation facilities: physics priorities and open issues

    Full text link
    The recent discovery that neutrinos have mass opens a wide new field of experimentation. Accelerator-made neutrinos are essential. Ideas for future facilities include superbeams beta-beams and neutrino factories, each associated with one or several options for detector systems. A summary of the perceived virtues and shortcomings of these options, and a number of open questions, are presented.Comment: based on an Invited plenary presentation at NUFACT05, Frascati, June 200

    A High Luminosity e+e- Collider in the LHC tunnel to study the Higgs Boson

    Full text link
    We consider the possibility of a 120x120 GeV e+e- ring collider in the LHC tunnel. A luminosity of 10^34/cm2/s can be obtained with a luminosity life time of a few minutes. A high operation efficiency would require two machines: a low emittance collider storage ring and a separate accelerator injecting electrons and positrons into the storage ring to top up the beams every few minutes. A design inspired from the high luminosity b-factory design and from the LHeC design report is presented. Statistics of over 10^4 HZ events per year per experiment can be contemplated for a Standard Higgs Boson mass of 115-130 GeV.Comment: updated to clarify energy loss per beam and included possibility in a larger tunnel as complement of informatio

    Superbeam studies at CERN

    Get PDF
    A conventional low-energy neutrino beam of great intensity could be produced by the Super Proton Linac at CERN as a first stage of a Neutrino Factory. Water Cherenkov and liquid scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters Δmatm2, θ23 and measure or severely constrain θ13. It is also shown that a very large water detector could eventually observe leptonic CP violation

    Source separation approach for the analysis of spatially resolved multiply excited autofluorescence spectra during optical clearing of ex vivo skin

    Get PDF
    Spatially resolved multiply excited autofluorescence spectroscopy is a valuable optical biopsy technique to investigate skin UV-visible optical properties in vivo in clinics. However, it provides bulk fluorescence signals from which the individual endogenous fluorophore contributions need to be disentangled. Skin optical clearing allows for increasing tissue transparency, thus providing access to more accurate in-depth information. The aim of the present contribution was to study the time changes in skin spatially resolved and multiply excited autofluorescence spectra during skin optical clearing. The latter spectra were acquired on an ex vivo human skin strip lying on a fluorescent gel substrate during 37 minutes of the optical clearing process of a topically applied sucrose-based solution. A Non Negative Matrix Factorization-based blind source separation approach was proposed to unmix skin tissue intrinsic fluorophore contributions and to analyze the time evolution of this mixing throughout the optical clearing process. This spectral unmixing exploited the multidimensionality of the acquired data, i.e., spectra resolved in five excitation wavelengths, four source-to-detector separations, and eight measurement times. Best fitting results between experimental and estimated spectra were obtained for optimal numbers of 3 and 4 sources. These estimated spectral sources exhibited common identifiable shapes of fluorescence emission spectra related to the fluorescent gel substrate and to known skin intrinsic fluorophores matching namely dermis collagen/elastin and epidermis flavins. The time analysis of the fluorophore contributions allowed us to highlight how the clearing process towards the deepest skin layers impacts skin autofluorescence through time, namely with a strongest contribution to the bulk autofluorescence signal of dermis collagen (respectively epidermis flavins) fluorescence at shortest (respectively longest) excitation wavelengths and longest (respectively shortest) source-to-detector separations

    A high purity measurement of RbR_b at SLD

    Get PDF
    Precision measurement of Rb can provide important information about the Standard Model and beyond. SLD has developed a new method for measuring Rb with very high purity. This measurement has the lowest systematic error reported to date and future measurements using this method will likely have the lowest total uncertainty. This paper will be divided into the five sections: introduction, hardware, topological vertexing tag method, results and conclusions. The introduction will discuss the importance of Rb and the problems with other measurement techniques. The hardware section will give a brief description of the SLC/SLD system concentrating on its advantages over LEP. An outlook towards the future of SLD Rb measurements will be included in the conclusions

    Machine detector interface for the e+ee^+e^- future circular collider

    Full text link
    The international Future Circular Collider (FCC) study aims at a design of pppp, e+ee^+e^-, epep colliders to be built in a new 100 km tunnel in the Geneva region. The e+ee^+e^- collider (FCC-ee) has a centre of mass energy range between 90 (Z-pole) and 375 GeV (tt_bar). To reach such unprecedented energies and luminosities, the design of the interaction region is crucial. The crab-waist collision scheme has been chosen for the design and it will be compatible with all beam energies. In this paper we will describe the machine detector interface layout including the solenoid compensation scheme. We will describe how this layout fulfills all the requirements set by the parameters table and by the physical constraints. We will summarize the studies of the impact of the synchrotron radiation, the analysis of trapped modes and of the backgrounds induced by single beam and luminosity effects giving an estimate of the losses in the interaction region and in the detector.Comment: 6 pages, 7 figures, 62th ICFA ABDW on High Luminosity Circular e+ee^+e^- Colliders, eeFACT2018, Hong Kong, Chin

    Household Exposure to Pesticides and Risk of Childhood Hematopoietic Malignancies: The ESCALE Study (SFCE)

    Get PDF
    International audienceOBJECTIVES: We investigated the role of household exposure to pesticides in the etiology of childhood hematopoietic malignancies. METHODS: The national registry-based case-control study ESCALE (Etude sur les cancers de l'enfant) was carried out in France over the period 2003-2004. Population controls were frequency matched with the cases on age and sex. Maternal household use of pesticides during pregnancy and paternal use during pregnancy or childhood were reported by the mothers in a structured telephone questionnaire. Insecticides (used at home, on pets, or for garden crops), herbicides, and fungicides were distinguished. We estimated odds ratios (ORs) using unconditional regression models closely adjusting for age, sex, degree of urbanization, and type of housing (flat or house). RESULTS: We included a total of 764 cases of acute leukemia (AL), 130 of Hodgkin lymphoma (HL), 166 of non-Hodgkin lymphoma (NHL), and 1,681 controls. Insecticide use during pregnancy was significantly associated with childhood AL [OR = 2.1; 95% confidence interval (CI), 1.7-2.5], both lymphoblastic and myeloblastic, NHL (OR = 1.8; 95% CI, 1.3-2.6), mainly for Burkitt lymphoma (OR = 2.7; 95% CI, 1.6-4.5), and mixed-cell HL (OR = 4.1; 95% CI, 1.4-11.8), but not nodular sclerosis HL (OR = 1.1; 95% CI, 0.6-1.9). Paternal household use of pesticides was also related to AL (OR = 1.5; 95% CI, 1.2-1.8) and NHL (OR = 1.7; 95% CI, 1.2-2.6); but for AL the relationships did not remain after adjustment for maternal pesticide use during pregnancy. CONCLUSION: The study findings strengthen the hypothesis that domestic use of pesticides may play a role in the etiology of childhood hematopoietic malignancies. The consistency of the findings with those of previous studies on AL raises the question of the advisability of preventing pesticide use by pregnant women

    Early T Cell Signalling Is Reversibly Altered in PD-1+ T Lymphocytes Infiltrating Human Tumors

    Get PDF
    To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL) is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC). Several signalling pathways (calcium, phosphorylation of ERK and Akt) and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture. The global result is an anergy that is quite distinct from clonal anergy induced in vitro, and closer to adaptive tolerance in mice. PD-1 (programmed death -1) is systematically expressed by TIL and may contribute to their anergy by its mere expression, and not only when it interacts with its ligands PD-L1 or PD-L2, which are not expressed by every tumor. Indeed, the TCR-induced calcium and ERK responses were reduced in peripheral blood T cells transfected with PD-1. Inhibition by sodium stibogluconate of the SHP-1 and SHP-2 phosphatases that associate with several inhibitory receptors including PD-1, relieves part of the anergy apparent in TIL or in PD-1-transfected T cells. This work highlights some of the molecular modifications contributing to functional defects of human TIL
    corecore